Ê×Ò³>>¿Î¸ÄÇ°ÑØ>> ¸ßÖÐÊýѧº¯Êý¶Ô³ÆÐԵĽâÎö ÕýÎÄ

¸ßÖÐÊýѧº¯Êý¶Ô³ÆÐԵĽâÎö

2013-05-22 11:21 ÎÄ/ÑîÊ÷ ¿Æ¼¼ÐÅÏ¢±¨¡¢½ñÈÕÎĽÌÖÜ¿¯¡¢2013¡¢5¡¢20¡¢10°æ

 

       ¶Ô³ÆÃÀÊÇÓÀºãµÄÃÀ£¬Ò²ÊÇÊýѧ³¤ÆÚ×·ÇóµÄÄ¿±ê£¬º¯ÊýÊÇÖÐѧÊýѧ½ÌѧµÄÖ÷Ïߣ¬ÊÇÖÐѧÊýѧµÄºËÐÄÄÚÈÝ£¬Ò²ÊÇÕû¸ö¸ßÖÐÊýѧµÄ»ù´¡¡£º¯ÊýµÄ¶Ô³ÆÐÔÊǺ¯ÊýµÄÒ»¸ö»ù±¾ÐÔÖÊ£¬¶Ô³Æ¹Øϵ²»½ö¹ã·º´æÔÚÓÚÊýѧÎÊÌâÖ®ÖУ¬¶øÇÒÀûÓöԳÆÐÔÍùÍùÄܸü¼ò½ÝµØʹÎÊÌâµÃµ½½â¾ö¡£±¾ÎÄÄâͨ¹ýº¯Êý×ÔÉíµÄ¶Ô³ÆÐԺͲ»Í¬º¯ÊýÖ®¼äµÄ¶Ô³ÆÐÔÕâÁ½¸ö·½ÃæÀ´ÆÊÎöÓ뺯Êý¶Ô³ÆÓйصÄÐÔÖÊ¡£
       Ò»¡¢º¯Êý×ÔÉíµÄ¶Ô³ÆÐÔ̽¾¿
       ¶¨Àí1.º¯Êý y = f (x)µÄͼÏñ¹ØÓÚµãA (a ,b)¶Ô³ÆµÄ³äÒªÌõ¼þÊÇ
       f (x) + f (2a£­x) = 2b
       Ö¤Ã÷£º£¨±ØÒªÐÔ£©ÉèµãP(x ,y)ÊÇy = f (x)ͼÏñÉÏÈÎÒ»µã£¬¡ßµãP( x ,y)¹ØÓÚµãA (a ,b)µÄ¶Ô³ÆµãP¡®£¨2a£­x£¬2b£­y£©Ò²ÔÚy = f (x)ͼÏñÉÏ£¬¡à 2b£­y = f (2a£­x)
¼´y + f (2a£­x)=2b¹Êf (x) + f (2a£­x) = 2b£¬±ØÒªÐÔµÃÖ¤¡£
       £¨³ä·ÖÐÔ£©ÉèµãP(x0,y0)ÊÇy = f (x)ͼÏñÉÏÈÎÒ»µã£¬Ôòy0 = f (x0)
       ¡ß f (x) + f (2a£­x) =2b¡àf (x0) + f (2a£­x0) =2b£¬¼´2b£­y0 = f (2a£­x0) ¡£
       ¹ÊµãP¡®£¨2a£­x0£¬2b£­y0£©Ò²ÔÚy = f (x) ͼÏñÉÏ£¬¶øµãPÓëµãP¡®¹ØÓÚµãA (a ,b)¶Ô³Æ£¬³ä·ÖÐÔµÃÕ÷¡£
       ÍÆÂÛ£ºº¯Êý y = f (x)µÄͼÏñ¹ØÓÚÔ­µãO¶Ô³ÆµÄ³äÒªÌõ¼þÊÇf (x) + f (£­x) = 0
       ¶¨Àí2. º¯Êý y = f (x)µÄͼÏñ¹ØÓÚÖ±Ïßx = a¶Ô³ÆµÄ³äÒªÌõ¼þÊÇ
¡¡    f (a +x) = f (a£­x) ¼´f (x) = f (2a£­x)  £¨Ö¤Ã÷Áô¸ø¶ÁÕߣ©
       ÍÆÂÛ£ºº¯Êý y = f (x)µÄͼÏñ¹ØÓÚyÖá¶Ô³ÆµÄ³äÒªÌõ¼þÊÇf (x) = f (£­x)
       ¶¨Àí3. ¢ÙÈôº¯Êýy = f (x) ͼÏñͬʱ¹ØÓÚµãA (a ,c)ºÍµãB (b ,c)³ÉÖÐÐĶԳƣ¨a¡Ùb£©£¬Ôòy = f (x)ÊÇÖÜÆÚº¯Êý£¬ÇÒ2| a£­b|ÊÇÆäÒ»¸öÖÜÆÚ¡£
       ¢ÚÈôº¯Êýy = f (x) ͼÏñͬʱ¹ØÓÚÖ±Ïßx = a ºÍÖ±Ïßx = b³ÉÖá¶Ô³Æ £¨a¡Ùb£©£¬Ôòy = f (x)ÊÇÖÜÆÚº¯Êý£¬ÇÒ2| a£­b|ÊÇÆäÒ»¸öÖÜÆÚ¡£
       ¢ÛÈôº¯Êýy = f (x)ͼÏñ¼È¹ØÓÚµãA (a ,c) ³ÉÖÐÐĶԳÆÓÖ¹ØÓÚÖ±Ïßx =b³ÉÖá¶Ô³Æ£¨a¡Ùb£©£¬Ôòy = f (x)ÊÇÖÜÆÚº¯Êý£¬ÇÒ4| a£­b|ÊÇÆäÒ»¸öÖÜÆÚ¡£
       ¢Ù¢ÚµÄÖ¤Ã÷Áô¸ø¶ÁÕߣ¬ÒÔϸø³ö¢ÛµÄÖ¤Ã÷£º
       ¡ßº¯Êýy = f (x)ͼÏñ¼È¹ØÓÚµãA (a ,c) ³ÉÖÐÐĶԳƣ¬
       ¡àf (x) + f (2a£­x) =2c£¬ÓÃ2b£­x´úxµÃ£º
       f (2b£­x) + f [2a£­(2b£­x) ] =2c¡­¡­¡­¡­¡­¡­£¨*£©
       Ó֡ߺ¯Êýy = f (x)ͼÏñÖ±Ïßx =b³ÉÖá¶Ô³Æ£¬
       ¡à f (2b£­x) = f (x)´úÈ루*£©µÃ
       f (x) = 2c£­f [2(a£­b) + x]¡­¡­¡­¡­£¨**£©
       ÓÃ2£¨a£­b£©£­x´úxµÃ
       f [2 (a£­b)+ x] = 2c£­f [4(a£­b) + x]´úÈ루**£©µÃ£º
       f (x) = f [4(a£­b) + x],¹Êy = f (x)ÊÇÖÜÆÚº¯Êý£¬ÇÒ4| a£­b|ÊÇÆäÒ»¸öÖÜÆÚ¡£
       ¶þ¡¢²»Í¬º¯Êý¶Ô³ÆÐÔµÄ̽¾¿
       ¶¨Àí4. º¯Êýy = f (x)Óëy = 2b£­f (2a£­x)µÄͼÏñ¹ØÓÚµãA (a ,b)³ÉÖÐÐĶԳơ£
       ¶¨Àí5. ¢Ùº¯Êýy = f (x)Óëy = f (2a£­x)µÄͼÏñ¹ØÓÚÖ±Ïßx = a³ÉÖá¶Ô³Æ¡£
        ¢Úº¯Êýy = f (x)Óëa£­x = f (a£­y)µÄͼÏñ¹ØÓÚÖ±Ïßx +y = a³ÉÖá¶Ô³Æ¡£
       ¢Ûº¯Êýy = f (x)Óëx£­a = f (y + a)µÄͼÏñ¹ØÓÚÖ±Ïßx£­y = a³ÉÖá¶Ô³Æ¡£
       ¶¨Àí4Ó붨Àí5ÖеĢ٢ÚÖ¤Ã÷Áô¸ø¶ÁÕߣ¬ÏÖÖ¤¶¨Àí5ÖеĢÛ
       ÉèµãP(x0 ,y0)ÊÇy = f (x)ͼÏñÉÏÈÎÒ»µã£¬Ôòy0 = f (x0)¡£¼ÇµãP( x ,y)¹ØÓÚÖ±Ïßx£­y = aµÄÖá¶Ô³ÆµãΪP¡®£¨x1£¬ y1£©£¬Ôòx1= a + y0, y1= x0£­a £¬¡àx0= a + y1, y0= x1£­a ´úÈëy0 = f (x0) Ö®ÖеÃx1£­a = f (a + y1) ¡àµãP¡®£¨x1£¬ y1£©ÔÚº¯Êýx£­a = f (y + a)µÄͼÏñÉÏ¡£
        ͬÀí¿ÉÖ¤£ºº¯Êýx£­a = f (y + a)µÄͼÏñÉÏÈÎÒ»µã¹ØÓÚÖ±Ïßx£­y = aµÄÖá¶Ô³ÆµãÒ²ÔÚº¯Êýy = f (x)µÄͼÏñÉÏ¡£¹Ê¶¨Àí5ÖеĢ۳ÉÁ¢¡£
       ÍÆÂÛ£ºº¯Êýy = f (x)µÄͼÏñÓëx = f (y)µÄͼÏñ¹ØÓÚÖ±Ïßx = y ³ÉÖá¶Ô³Æ¡£
       Èý¡¢ Èý½Çº¯ÊýͼÏñµÄ¶Ô³ÆÐÔÁбí
       ¸ßÖÐÊýѧº¯Êý¶Ô³ÆÐԵĽâÎö  
       ¢Úy = tan xµÄËùÓжԳÆÖÐÐÄ×ø±êÓ¦¸ÃÊÇ(k¦Ð/2 ,0 )£¬ÈÝÒ×´íÎóµÄÈÏΪÊÇ£¨k¦Ð, 0£©
       ËÄ¡¢º¯Êý¶Ô³ÆÐÔÓ¦ÓþÙÀý
       Àý1£º¶¨ÒåÔÚRÉϵķdz£Êýº¯ÊýÂú×㣺f (10+x)Ϊżº¯Êý£¬ÇÒf (5£­x) = f (5+x),Ôòf (x)Ò»¶¨ÊÇ£¨   £©    
       (A)ÊÇżº¯Êý£¬Ò²ÊÇÖÜÆÚº¯Êý        (B)ÊÇżº¯Êý£¬µ«²»ÊÇÖÜÆÚº¯Êý    (C)ÊÇÆ溯Êý£¬Ò²ÊÇÖÜÆÚº¯Êý        (D)ÊÇÆ溯Êý£¬µ«²»ÊÇÖÜÆÚº¯Êý
       ½â£º¡ßf (10+x)Ϊżº¯Êý£¬¡àf (10+x) = f (10£­x).
             ¡àf (x)ÓÐÁ½Ìõ¶Ô³ÆÖá x = 5Óëx =10 £¬Òò´Ëf (x)ÊÇÒÔ10ΪÆäÒ»¸öÖÜÆÚµÄÖÜÆÚº¯Êý£¬
             ¡àx =0¼´yÖáÒ²ÊÇf (x)µÄ¶Ô³ÆÖᣬÒò´Ëf (x)»¹ÊÇÒ»¸öżº¯Êý¡£¹ÊÑ¡(A)               
        Àý2£ºÉ趨ÒåÓòΪRµÄº¯Êýy = f (x)¡¢y = g(x)¶¼Óз´º¯Êý£¬²¢ÇÒf(x£­1)ºÍg-1(x£­2)º¯ÊýµÄͼÏñ¹ØÓÚÖ±Ïßy = x¶Ô³Æ£¬Èôg(5) = 1999£¬ÄÇôf(4)=£¨ £©¡£
       £¨A£©    1999£» £¨B£©2000£» £¨C£©2001£»£¨D£©2002¡£ ¡¢
       ½â£º¡ßy = f(x£­1)ºÍy = g-1(x£­2)º¯ÊýµÄͼÏñ¹ØÓÚÖ±Ïßy = x¶Ô³Æ£¬
        ¡ày = g-1(x£­2) ·´º¯ÊýÊÇy = f(x£­1)£¬¶øy = g-1(x£­2)µÄ·´º¯ÊýÊÇ:y = 2 + g(x), ¡àf(x£­1) = 2 + g(x), ¡àÓÐf(5£­1) = 2 + g(5)=2001
       ¹Êf(4) = 2001,Ӧѡ£¨C£©
       Àý3.Éèf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒf(1+x)= f(1£­x),µ±£­1¡Üx¡Ü0ʱ£¬
        f (x) = £­x£¬Ôòf (8.6 ) = _________         
         ½â£º¡ßf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý¡àx = 0ÊÇy = f(x)¶Ô³ÆÖ᣻
       ÓÖ¡ßf(1+x)= f(1£­x) ¡àx = 1Ò²ÊÇy = f (x) ¶Ô³ÆÖá¡£¹Êy = f(x)ÊÇÒÔ2ΪÖÜÆÚµÄÖÜÆÚº¯Êý£¬¡àf (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (£­0.6 ) = 0.3
       Àý4. Éèf(x)ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬ÇÒf(x+2)= £­f(x),µ±0¡Üx¡Ü1ʱ£¬
       f (x) = x£¬Ôòf (7.5 ) = £¨  £©
       (A)  0.5        (B)  £­0.5      (C) 1.5      (D) £­1.5
       ½â£º¡ßy = f (x)ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬¡àµã£¨0£¬0£©ÊÇÆä¶Ô³ÆÖÐÐÄ£»
       ÓÖ¡ßf (x+2 )= £­f (x) = f (£­x)£¬¼´f (1+ x) = f (1£­x)£¬ ¡àÖ±Ïßx = 1ÊÇy = f (x) ¶Ô³ÆÖᣬ¹Êy = f (x)ÊÇÖÜÆÚΪ2µÄÖÜÆÚº¯Êý¡£
        ¡àf (7.5 ) = f (8£­0.5 ) = f (£­0.5 ) = £­f (0.5 ) =£­0.5  ¹ÊÑ¡(B)

                                                       £¨ ×÷Õßµ¥Î»£ººÓÄÏÊ¡ÉòÇðÏصڶþ¸ßÖУ©

Ïà¹ØÐÂÎÅ

ÖлªÎĽÌÍøÊÖ»ú°æ
? ÖлªÎĽÌÍø°æȨËùÓÐ ÖлªÎĽÌÍø¼ò½é Ͷ¸åÖ¸ÄÏ ÁªÏµÎÒÃÇ tags °æȨÉùÃ÷ sitemap