¶Ô³ÆÃÀÊÇÓÀºãµÄÃÀ£¬Ò²ÊÇÊýѧ³¤ÆÚ×·ÇóµÄÄ¿±ê£¬º¯ÊýÊÇÖÐѧÊýѧ½ÌѧµÄÖ÷Ïߣ¬ÊÇÖÐѧÊýѧµÄºËÐÄÄÚÈÝ£¬Ò²ÊÇÕû¸ö¸ßÖÐÊýѧµÄ»ù´¡¡£º¯ÊýµÄ¶Ô³ÆÐÔÊǺ¯ÊýµÄÒ»¸ö»ù±¾ÐÔÖÊ£¬¶Ô³Æ¹Øϵ²»½ö¹ã·º´æÔÚÓÚÊýѧÎÊÌâÖ®ÖУ¬¶øÇÒÀûÓöԳÆÐÔÍùÍùÄܸü¼ò½ÝµØʹÎÊÌâµÃµ½½â¾ö¡£±¾ÎÄÄâͨ¹ýº¯Êý×ÔÉíµÄ¶Ô³ÆÐԺͲ»Í¬º¯ÊýÖ®¼äµÄ¶Ô³ÆÐÔÕâÁ½¸ö·½ÃæÀ´ÆÊÎöÓ뺯Êý¶Ô³ÆÓйصÄÐÔÖÊ¡£
Ò»¡¢º¯Êý×ÔÉíµÄ¶Ô³ÆÐÔ̽¾¿
¶¨Àí1.º¯Êý y = f (x)µÄͼÏñ¹ØÓÚµãA (a ,b)¶Ô³ÆµÄ³äÒªÌõ¼þÊÇ
f (x) + f (2a£x) = 2b
Ö¤Ã÷£º£¨±ØÒªÐÔ£©ÉèµãP(x ,y)ÊÇy = f (x)ͼÏñÉÏÈÎÒ»µã£¬¡ßµãP( x ,y)¹ØÓÚµãA (a ,b)µÄ¶Ô³ÆµãP¡®£¨2a£x£¬2b£y£©Ò²ÔÚy = f (x)ͼÏñÉÏ£¬¡à 2b£y = f (2a£x)
¼´y + f (2a£x)=2b¹Êf (x) + f (2a£x) = 2b£¬±ØÒªÐÔµÃÖ¤¡£
£¨³ä·ÖÐÔ£©ÉèµãP(x0,y0)ÊÇy = f (x)ͼÏñÉÏÈÎÒ»µã£¬Ôòy0 = f (x0)
¡ß f (x) + f (2a£x) =2b¡àf (x0) + f (2a£x0) =2b£¬¼´2b£y0 = f (2a£x0) ¡£
¹ÊµãP¡®£¨2a£x0£¬2b£y0£©Ò²ÔÚy = f (x) ͼÏñÉÏ£¬¶øµãPÓëµãP¡®¹ØÓÚµãA (a ,b)¶Ô³Æ£¬³ä·ÖÐÔµÃÕ÷¡£
ÍÆÂÛ£ºº¯Êý y = f (x)µÄͼÏñ¹ØÓÚÔµãO¶Ô³ÆµÄ³äÒªÌõ¼þÊÇf (x) + f (£x) = 0
¶¨Àí2. º¯Êý y = f (x)µÄͼÏñ¹ØÓÚÖ±Ïßx = a¶Ô³ÆµÄ³äÒªÌõ¼þÊÇ
¡¡ f (a +x) = f (a£x) ¼´f (x) = f (2a£x) £¨Ö¤Ã÷Áô¸ø¶ÁÕߣ©
ÍÆÂÛ£ºº¯Êý y = f (x)µÄͼÏñ¹ØÓÚyÖá¶Ô³ÆµÄ³äÒªÌõ¼þÊÇf (x) = f (£x)
¶¨Àí3. ¢ÙÈôº¯Êýy = f (x) ͼÏñͬʱ¹ØÓÚµãA (a ,c)ºÍµãB (b ,c)³ÉÖÐÐĶԳƣ¨a¡Ùb£©£¬Ôòy = f (x)ÊÇÖÜÆÚº¯Êý£¬ÇÒ2| a£b|ÊÇÆäÒ»¸öÖÜÆÚ¡£
¢ÚÈôº¯Êýy = f (x) ͼÏñͬʱ¹ØÓÚÖ±Ïßx = a ºÍÖ±Ïßx = b³ÉÖá¶Ô³Æ £¨a¡Ùb£©£¬Ôòy = f (x)ÊÇÖÜÆÚº¯Êý£¬ÇÒ2| a£b|ÊÇÆäÒ»¸öÖÜÆÚ¡£
¢ÛÈôº¯Êýy = f (x)ͼÏñ¼È¹ØÓÚµãA (a ,c) ³ÉÖÐÐĶԳÆÓÖ¹ØÓÚÖ±Ïßx =b³ÉÖá¶Ô³Æ£¨a¡Ùb£©£¬Ôòy = f (x)ÊÇÖÜÆÚº¯Êý£¬ÇÒ4| a£b|ÊÇÆäÒ»¸öÖÜÆÚ¡£
¢Ù¢ÚµÄÖ¤Ã÷Áô¸ø¶ÁÕߣ¬ÒÔϸø³ö¢ÛµÄÖ¤Ã÷£º
¡ßº¯Êýy = f (x)ͼÏñ¼È¹ØÓÚµãA (a ,c) ³ÉÖÐÐĶԳƣ¬
¡àf (x) + f (2a£x) =2c£¬ÓÃ2b£x´úxµÃ£º
f (2b£x) + f [2a£(2b£x) ] =2c¡¡¡¡¡¡£¨*£©
Ó֡ߺ¯Êýy = f (x)ͼÏñÖ±Ïßx =b³ÉÖá¶Ô³Æ£¬
¡à f (2b£x) = f (x)´úÈ루*£©µÃ
f (x) = 2c£f [2(a£b) + x]¡¡¡¡£¨**£©
ÓÃ2£¨a£b£©£x´úxµÃ
f [2 (a£b)+ x] = 2c£f [4(a£b) + x]´úÈ루**£©µÃ£º
f (x) = f [4(a£b) + x],¹Êy = f (x)ÊÇÖÜÆÚº¯Êý£¬ÇÒ4| a£b|ÊÇÆäÒ»¸öÖÜÆÚ¡£
¶þ¡¢²»Í¬º¯Êý¶Ô³ÆÐÔµÄ̽¾¿
¶¨Àí4. º¯Êýy = f (x)Óëy = 2b£f (2a£x)µÄͼÏñ¹ØÓÚµãA (a ,b)³ÉÖÐÐĶԳơ£
¶¨Àí5. ¢Ùº¯Êýy = f (x)Óëy = f (2a£x)µÄͼÏñ¹ØÓÚÖ±Ïßx = a³ÉÖá¶Ô³Æ¡£
¢Úº¯Êýy = f (x)Óëa£x = f (a£y)µÄͼÏñ¹ØÓÚÖ±Ïßx +y = a³ÉÖá¶Ô³Æ¡£
¢Ûº¯Êýy = f (x)Óëx£a = f (y + a)µÄͼÏñ¹ØÓÚÖ±Ïßx£y = a³ÉÖá¶Ô³Æ¡£
¶¨Àí4Ó붨Àí5ÖеĢ٢ÚÖ¤Ã÷Áô¸ø¶ÁÕߣ¬ÏÖÖ¤¶¨Àí5ÖеĢÛ
ÉèµãP(x0 ,y0)ÊÇy = f (x)ͼÏñÉÏÈÎÒ»µã£¬Ôòy0 = f (x0)¡£¼ÇµãP( x ,y)¹ØÓÚÖ±Ïßx£y = aµÄÖá¶Ô³ÆµãΪP¡®£¨x1£¬ y1£©£¬Ôòx1= a + y0, y1= x0£a £¬¡àx0= a + y1, y0= x1£a ´úÈëy0 = f (x0) Ö®ÖеÃx1£a = f (a + y1) ¡àµãP¡®£¨x1£¬ y1£©ÔÚº¯Êýx£a = f (y + a)µÄͼÏñÉÏ¡£
ͬÀí¿ÉÖ¤£ºº¯Êýx£a = f (y + a)µÄͼÏñÉÏÈÎÒ»µã¹ØÓÚÖ±Ïßx£y = aµÄÖá¶Ô³ÆµãÒ²ÔÚº¯Êýy = f (x)µÄͼÏñÉÏ¡£¹Ê¶¨Àí5ÖеĢ۳ÉÁ¢¡£
ÍÆÂÛ£ºº¯Êýy = f (x)µÄͼÏñÓëx = f (y)µÄͼÏñ¹ØÓÚÖ±Ïßx = y ³ÉÖá¶Ô³Æ¡£
Èý¡¢ Èý½Çº¯ÊýͼÏñµÄ¶Ô³ÆÐÔÁбí
¢Úy = tan xµÄËùÓжԳÆÖÐÐÄ×ø±êÓ¦¸ÃÊÇ(k¦Ð/2 ,0 )£¬ÈÝÒ×´íÎóµÄÈÏΪÊÇ£¨k¦Ð, 0£©
ËÄ¡¢º¯Êý¶Ô³ÆÐÔÓ¦ÓþÙÀý
Àý1£º¶¨ÒåÔÚRÉϵķdz£Êýº¯ÊýÂú×㣺f (10+x)Ϊżº¯Êý£¬ÇÒf (5£x) = f (5+x),Ôòf (x)Ò»¶¨ÊÇ£¨ £©
(A)ÊÇżº¯Êý£¬Ò²ÊÇÖÜÆÚº¯Êý (B)ÊÇżº¯Êý£¬µ«²»ÊÇÖÜÆÚº¯Êý (C)ÊÇÆ溯Êý£¬Ò²ÊÇÖÜÆÚº¯Êý (D)ÊÇÆ溯Êý£¬µ«²»ÊÇÖÜÆÚº¯Êý
½â£º¡ßf (10+x)Ϊżº¯Êý£¬¡àf (10+x) = f (10£x).
¡àf (x)ÓÐÁ½Ìõ¶Ô³ÆÖá x = 5Óëx =10 £¬Òò´Ëf (x)ÊÇÒÔ10ΪÆäÒ»¸öÖÜÆÚµÄÖÜÆÚº¯Êý£¬
¡àx =0¼´yÖáÒ²ÊÇf (x)µÄ¶Ô³ÆÖᣬÒò´Ëf (x)»¹ÊÇÒ»¸öżº¯Êý¡£¹ÊÑ¡(A)
Àý2£ºÉ趨ÒåÓòΪRµÄº¯Êýy = f (x)¡¢y = g(x)¶¼Óз´º¯Êý£¬²¢ÇÒf(x£1)ºÍg-1(x£2)º¯ÊýµÄͼÏñ¹ØÓÚÖ±Ïßy = x¶Ô³Æ£¬Èôg(5) = 1999£¬ÄÇôf(4)=£¨ £©¡£
£¨A£© 1999£» £¨B£©2000£» £¨C£©2001£»£¨D£©2002¡£ ¡¢
½â£º¡ßy = f(x£1)ºÍy = g-1(x£2)º¯ÊýµÄͼÏñ¹ØÓÚÖ±Ïßy = x¶Ô³Æ£¬
¡ày = g-1(x£2) ·´º¯ÊýÊÇy = f(x£1)£¬¶øy = g-1(x£2)µÄ·´º¯ÊýÊÇ:y = 2 + g(x), ¡àf(x£1) = 2 + g(x), ¡àÓÐf(5£1) = 2 + g(5)=2001
¹Êf(4) = 2001,Ӧѡ£¨C£©
Àý3.Éèf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒf(1+x)= f(1£x),µ±£1¡Üx¡Ü0ʱ£¬
f (x) = £x£¬Ôòf (8.6 ) = _________
½â£º¡ßf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý¡àx = 0ÊÇy = f(x)¶Ô³ÆÖ᣻
ÓÖ¡ßf(1+x)= f(1£x) ¡àx = 1Ò²ÊÇy = f (x) ¶Ô³ÆÖá¡£¹Êy = f(x)ÊÇÒÔ2ΪÖÜÆÚµÄÖÜÆÚº¯Êý£¬¡àf (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (£0.6 ) = 0.3
Àý4. Éèf(x)ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬ÇÒf(x+2)= £f(x),µ±0¡Üx¡Ü1ʱ£¬
f (x) = x£¬Ôòf (7.5 ) = £¨ £©
(A) 0.5 (B) £0.5 (C) 1.5 (D) £1.5
½â£º¡ßy = f (x)ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬¡àµã£¨0£¬0£©ÊÇÆä¶Ô³ÆÖÐÐÄ£»
ÓÖ¡ßf (x+2 )= £f (x) = f (£x)£¬¼´f (1+ x) = f (1£x)£¬ ¡àÖ±Ïßx = 1ÊÇy = f (x) ¶Ô³ÆÖᣬ¹Êy = f (x)ÊÇÖÜÆÚΪ2µÄÖÜÆÚº¯Êý¡£
¡àf (7.5 ) = f (8£0.5 ) = f (£0.5 ) = £f (0.5 ) =£0.5 ¹ÊÑ¡(B)
£¨ ×÷Õßµ¥Î»£ººÓÄÏÊ¡ÉòÇðÏصڶþ¸ßÖУ©
ÏÂһƪ£ºÌ¸Ì¸Ð¡Ñ§Êýѧ½ÌѧÖеı¸¿Î