小学数学思维训练方法的新体会
山东省诸城市经济开发区诸冯学校 刘敏
教师在教学过程中不仅要教学生“学会”,而且要教学生“会学”、“善学”,这就必须善于引导学生进行积极的思维活动,开发学生的智力和潜能。动机是人们“因需要而产生的一种心理反映”,它是人们行为活动的内动力。因此,激发学生思维的动机,是培养其思维能力的关键因素。教师如何才能激发学生思维动机呢?
一、产生思维的动机创设思维情境,激发学生的思维动机,是对其进行思维训练的重要环节。例如:在教学“按比例分配”这一内容时,首先要使学生明确学习这一知识的目的:在平均分不合理的情况下,就产生了按比例分配这种新的分配方法。教学时可设计这样一个问题:一个车间把生产800个零件的任务交给了张师傅和李师傅,完成任务后要把400元的加工费分给他们。结果张师傅加工了500个零件,李师傅加工了300个零件。这时把400元的加工费平均分给他们合理吗?你认为应该怎样分。
二、引导学生抓住思维的起始点。数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生——发展——延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,从已有的经验开始,或从旧知识引入,这就是思维的开端。如在教“能被3整除的数的特征”时,教师先让学生随便报数,教师很快说出了这个数能否被3整除,然后让学生验算,结果全对。接着顺势诱导:这样一个一个去除太费时间,能不能不用除法,一看就知道一个数能否被3整除呢?学生思维活跃,兴趣很高。教师通过联系质疑,在关键处激疑,组织学生讨论解疑,逐步把学生的思维引向高潮。
三、引导学生抓住思维的转折点。学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。如在教“三角形的认识”时,先让学生拿出事先准备的6个三角形,看每个三角形的三个角各是什么角?把具有共同特征角的三角形归为一类,看能分几类?然后总结出三类三角形的相同点(都有两个锐角)和不同点(另一个角分别是锐角、直角、钝角)。这样进行观察比较,学生边看边比边想,很快掌握了三角形的不同种类及其特点。学生在做题常常出现一些错误,教师要善于以学生解题之错作为探究错因之源,引导学生纠正错误,认识错源,以便畅通正确的思路,如在教完《比的基本性质》后,为了强化巩固这一性质,教师出了这样一道题:“3:8这个比的前项加上6,要使比值不变,它的后项要加上几?”有的学生不加思索地回答:“要加上6”。有的则答不上来。为了纠正错误,疏通思路,教师引导学生思索:(1)什么是比的性质?(2)比的前项加上6等于9,就相当于把比的前项乘以几?(3)要使比值不变,比的后项应该乘以几?这样巧设提问,使学生不仅纠正了错误,而且找到了思维的落脚点,寻到了解决问题的途径。
四、小学生的思维特点是从具体形象思维逐步向抽象逻辑思维过渡。发展学生思维的“着眼点”应放在逐步过渡上。教学中,结合知识内容,精心组织操作活动,可以帮助学生将抽象的事物具体化。例如:在教学“圆柱体侧面积”这一内容时,教师引导学生将准备好的圆柱模型侧面剪开,并观察剪开后的长方形或平行四边形、正方形的各个部分与圆柱各部分之间的关系,从而概括出圆柱体侧面积的计算公式。通过这一系列的操作、观察、思考、概括,培养了学生变抽象为具体的思维方法。
总之,在小学数学教学中,有目的、有计划地对学生实施思维训练,有利于提高数学教学质量,有利于发展学生思维能力,从而全面提高学生的素质。